Abstract and 1. Introduction

2. Method

3. Experiments on real data

3.1. Benefits scale with model size and 3.2. Faster inference

3.3. Learning global patterns with multi-byte prediction and 3.4. Searching for the optimal n

3.5. Training for multiple epochs and 3.6. Finetuning multi-token predictors

3.7. Multi-token prediction on natural language

4. Ablations on synthetic data and 4.1. Induction capability

4.2. Algorithmic reasoning

5. Why does it work? Some speculation and 5.1. Lookahead reinforces choice points

5.2. Information-theoretic argument

6. Related work

7. Conclusion, Impact statement, Environmental impact, Acknowledgements, and References

A. Additional results on self-speculative decoding

B. Alternative architectures

C. Training speeds

D. Finetuning

E. Additional results on model scaling behavior

F. Details on CodeContests finetuning

G. Additional results on natural language benchmarks

H. Additional results on abstractive text summarization

I. Additional results on mathematical reasoning in natural language

J. Additional results on induction learning

K. Additional results on algorithmic reasoning

L. Additional intuitions on multi-token prediction

M. Training hyperparameters

B. Alternative architectures

The architecture described in Section 2 is not the only sensible option, but proved technically viable and well-performing in our experiments. We describe and compare alternative architectures in this section.

Replicated unembeddings Replicating the unembedding matrix n times is a simple method for implementing multi-token prediction architectures. However, it requires matrices with shapes (d, nV ) in the notation of Section 2, which is prohibitive for large-scale trainings.

In another anticausal variant, the network starts by predicting the most distant tokens before gradually refining up to the following token:

These architectures likewise allow a sequential forward/backward order as the parallel architecture from Section 2. This is described in Figure S11.

This paper is available on arxiv under CC BY 4.0 DEED license.

Authors:

(1) Fabian Gloeckle, FAIR at Meta, CERMICS Ecole des Ponts ParisTech, and contributed equally;

(2) Badr Youbi IdrissiFAIR at Meta, LISN Université Paris-Saclay, and contributed equally;

(3) Baptiste Rozière, FAIR at Meta;

(4) David Lopez-Paz, FAIR at Meta and his the last author;

(5) Gabriel Synnaeve, FAIR at Meta and the last author.