One of the biggest reasons for data science project failure is poor problem framework, which can be easily mitigated by early intervention

You must have come across various data science projects problems by working on projects with companies or startups that later get scrapped. Or, maybe the problem statement gets changed by some upper management, or there were client interventions due to lack of desired result or incomplete data. In any case, the failure rate of various data science initiatives is really high — often estimated at approximately 70–80%.

As per my experience, various reasons for data science project failure can be attributed to:

Defining the initial milestone of the project is necessary to keep stakeholders on the same page.

How to Move Towards Better Problem Definition

Better Problem definition keeps checks on the expectations of stakeholders and it saves a lot of time by reducing unnecessary iterations and creates a better understanding of the product for the developer, analysts, data scientists, and product managers. Involving someone who speaks the language of both data and business is super useful in this process, they become an organizational bridge between data science teams and business units so they are the ideal candidate to assume overall responsibility to enforce certain principles that are applied during problem definition process.

Some of the principles are mentioned below:

Do not move past the problem definition until it meets the following objectives:

In conclusion, taking time to define the problem is a painful exercise and sometimes it will feel like an uncomfortable process but there is no substitute for getting the right people involved, probing the problem more deeply, and taking time to understand the business objective that an organization trying to achieve. Every data science team needs to get better at defining the problem the right way.

At last, I will leave with a good quote from Albert Einstein:

“ If I were given one hour to save the planet, I would spend 59 minutes defining the problem and one minute solving it ”