In the world of system design, one of the most critical attributes that most architects aim to achieve is availability. Availability refers to the ability of a system to remain operational and accessible to users even in the face of various failures, disruptions, and maintenance activities. Ensuring high availability is paramount, as it directly affects the user experience and business continuity. This blog post will explore key strategies and considerations for achieving exceptional availability in real systems.

Redundancy & Fault Tolerance

Redundancy is a fundamental concept in system design to ensure availability. Redundancy involves having backup components or systems in place to take over in case of failure. This redundancy can be applied to various parts of a system, such as servers, databases, network connections, or power supplies. The idea is that if a critical component fails, the redundant one can seamlessly take over, minimizing downtime and ensuring continuous service.

For example, in a web server cluster, multiple servers can serve the same application, and if one server fails, user requests can be automatically routed to another functioning server. Similarly, in data storage, data can be replicated across multiple servers or data centers to ensure data availability even in the event of hardware failures.

Fault Tolerance complements redundancy by enabling a system to continue operating even when components fail. Strategies for fault tolerance include:

Failover Mechanisms

Failover mechanisms are designed to ensure that the system can automatically switch to a redundant or standby system when the primary system encounters a failure. Failover mechanisms are, at their core, all about ensuring that when something goes wrong, the system can switch seamlessly to an alternate, redundant, or standby system. The process of failover typically involves:

For example, we can consider two common types of failure: Database and Service failover.

Database Failover

Database clusters are prime candidates for failover mechanisms. Databases hold critical data, and downtime or data loss can have severe consequences. Implementing automatic database failover minimizes these risks:

Service Failover

Failover mechanisms are not limited to databases; they extend to services as well. Services should be designed to handle failover gracefully, and load balancers often play a crucial role in this:

Reliable Cross-System Communication

Reliable cross-system communication is essential to maintain high availability. Systems are often composed of multiple components that need to exchange data and messages. This communication must be designed to be resilient and fault-tolerant.

To achieve reliable cross-system communication, engineers can implement practices such as message queuing, circuit breakers, and protocol-level retries. These mechanisms help ensure that data is not lost and that services can continue to function even when parts of the system experience temporary disruptions.

In a distributed architecture where services are often loosely coupled and may be scattered across different networks or even geographical locations, the communication fabric binding them together must be robust and fault-tolerant. There are multiple strategies to maintain reliable cross-system communication as follows:

Message Queue

One of the most effective patterns for ensuring reliable communication is the use of message queues. Message queues act as intermediaries between service producers and consumers, providing a buffer that decouples the services.

Circuit Breakers

A circuit breaker is another pattern that is particularly useful in preventing system failures from cascading. It works similarly to an electrical circuit breaker:

Protocol-Level Retries

Retries can be implemented at the protocol level to enhance the resilience of communication:

Service Rate Limiting

To further ensure system stability, Service rate limiting is a must-have:

Maintenance Without Downtime

Maintenance is an inevitable part of managing systems. However, downtime during maintenance can be detrimental to user experience and business operations. Achieving high availability demands that engineers implement strategies that allow them to perform maintenance tasks without causing disruptions. Here, we’ll explore some of these techniques:

Blue-Green Deployment — Traffic Switching

Blue-green deployment is a strategy where you maintain two identical environments: one is the “blue” environment (the current production version), and the other is the “green” environment (the new version). This approach facilitates seamless updates:

  1. Isolation of Environments: Blue and green environments are kept isolated and run independently. The blue environment serves live traffic, while the green environment is used for testing and updates.
  2. Zero-Downtime Switch: To perform an update, you switch traffic from the blue environment to the green environment. This transition can be almost instantaneous, ensuring minimal or no downtime.
  3. Testing and Validation: Updates are first rolled out to the green environment, where they are thoroughly tested. Any issues can be addressed before directing live traffic to the green environment.
  4. Quick Rollback: If issues arise after the switch, reverting to the blue environment is quick and straightforward.

Canary Releases — Gradual Testing

Canary releases are a cautious approach to updates, where you roll out new versions to a small subset of users or a limited portion of your infrastructure. This enables you to monitor and validate the changes gradually:

  1. Initial Release: Initially, the new version is released to a small, carefully selected group of users or a subset of the system.
  2. Monitoring and Feedback: During this phase, closely monitor the performance and gather user feedback. Look for any issues or unexpected behavior.
  3. Gradual Expansion: If the new version performs well, gradually expand its release to a larger user base or more components. Continue monitoring and collecting feedback.
  4. Full Rollout: Once you’re confident in the update’s stability and performance, proceed with a full rollout.
  5. Safety Measures: Canary releases allow for the containment of potential issues to a limited audience, reducing the impact of problems and providing an opportunity to address them before wider deployment.

Defining and Measuring Availability

Service Level Agreements (SLA), Service Level Indicators (SLI), and Service Level Objectives (SLO) are essential components of a robust availability strategy. These terms are used to define, measure, and guarantee the availability of a system.

Service Level Agreements (SLA)

An SLA is essentially a contract between a service provider and the end-user that lays out the terms of service delivery. It’s the promise of availability and performance that a service provider makes to its customers.

Service Level Indicators (SLI)

SLIs are the measurable values that indicate the level of service being provided. They are the metrics through which the health and performance of a service can be assessed.

Service Level Objectives (SLO)

SLOs are specific targets set by service providers, based on SLIs, for the level of service they aim to provide. They represent the goals that the service provider is striving to achieve.

In essence, SLA, SLI, and SLO are not just acronyms; they are the cornerstone of a trust relationship between service providers and users. They form the basis of a strategic approach to achieving and maintaining the high availability that is critical in today’s digital landscape. Together, they provide a clear path for ensuring that services remain reliable, available, and performant, thereby creating a better experience for the user and a more manageable and predictable environment for the service provider.

Conclusion

In conclusion, designing for availability is a multifaceted task that involves redundancy, failover mechanisms, reliable cross-system communication, maintenance strategies, and robust SLAs, SLIs, and SLOs. Ensuring high availability is crucial for businesses and services in today’s digital world, and a well-designed system that prioritizes availability can lead to better user experiences, increased revenue, and improved overall reliability.

Also appears here.