A peek into what happened and what’s next in robotics

Peer written with Irati Zamalloa Ugarte.

Robotics is called to be the next technological revolution. Many seem to agree that robots will have a tremendous impact over the following years and some are heavily betting on it. Companies are investing billions in buying others and public authorities are discussing legal frameworks to enable a coherent growth of robots.

Understanding where the field of robotics is heading is more than guesswork. While much of the existing public concerns focus on discussing the potential issues that will arise with the advent of robots, in this article, we present a review of some of the most relevant milestones that happened in robotics over the last decades and our insight about the technologically feasible near future of robotics.

Pre-Robots and first manipulators

What’s the origin of robots? To figure it out we’ll need to look quite a few decades ago where different conflicts motivated the technological growth that eventually enabled companies to build the first digitally controlled mechanical arms to boost the performance obtained while executing different activities. One those first and well documented robots was UNIMATE (considered by many the first industrial robot), a programmable machine funded by General Motors used to create a production line with only robots. UNIMATE helped improve the production at the time. This motivated other companies and research centers to actively dedicate resources to robotics which boosted the growth of the field.

Sensorized robots

Sensors were not typically included in robots until the 70’s. Starting from 1968, a second generation of robots appeared which integrated sensors. These robots were able to react to its environment and offer responses that met different scenarios.

Relevant investments were observed during this period in robotics. Industrial players all around the world were attracted by the advantage that robots promised.

Worldwide industrial robots — Era of robots

Many consider that the Era of Robots started in 1980. Billions of dollars were invested by companies all around to world to automate basic tasks in their assembly lines and sales of industrial robots grew 80% above what happened in previous years.

Key technologies for the future of robots appeared within these years. General Internet access was extended in 1980, Ethernet became a standard in 1983 (IEEE 802.3), the Linux kernel was announced in 1991 and soon after that real-time patches started appearing on top of Linux.

The robots created between 1980 and 1999 belong to what we call the third generation of robots. Robots that were reprogrammable and included dedicated controllers. Robots populated many industrial sectors and were used for a wide variety of activities: painting, soldering, moving, assembling, etc.

By the end of the 90s, companies started thinking about robots outside of the industrial environment. Several companies created promising concepts that later will represent an inspiration for future roboticists. Among the robots created within this period, we highlight two:

Both products made use of interchangeable hardware and software modules however these efforts have never been translated to industrial environments.

Integration effort was identified as one of the main issues within robotics and particularly related to robots operating in industry. A common infrastructure typically reduces the integration effort by facilitating an environment where components can simply be connected and interoperate. Each of the infrastructure-supported components are optimized for such integration at their conception and the infrastructure handles the integration effort. At that point, components could come from different manufacturers, yet when supported by a common infrastructure, they will interoperate.

Sony’s AIBO and LEGO’s Mindstorms kit were built upon this principle and both presented common infrastructures. Even though they came from the consumer side of robotics, one could argue that their success was strongly related to the fact that both products made use of interchangeable hardware and software modules. The use of a common infrastructure proved to be one of the key advantages of these technologies however those concepts were never translated to industrial environments. Instead, each manufacturer, in an attempt to dominate the market started creating their own “robot programming languages”.

Dawn of smart robots

Starting from the year 2000, we observed that a new generation of robot technologies started appearing. The so called fourth generation of robots consisted of more intelligent robots that included advanced computers to reason and learn (to some extend at least) and more sophisticated sensors that helped controllers adapt themselves more effectively to different circumstances.

Among the technologies that appeared in this period we’d highlight the Player Project (2000, formerly the Player/Stage Project), the Gazebo simulator (2004) and the Robot Operating System (2007). Moreover, relevant hardware platforms appeared during these years. Single Board Computers (SBCs) like the Raspberry Pi enabled millions of users all around the world to create robots easily.

The boost of bio-inspired Artificial Intelligence

The increasing popularity of artificial intelligence and particularly of neural networks became relevant in this period as well. While a lot of the important work on neural networks happened in the 80’s and in the 90’s, at that time computers did not have enough computational power. Datasets weren’t big enough to be useful in practical applications. As a result, neural networks practically disappeared in the first decade of the 21st century. However, starting from 2009 (speech recognition), neural networks gained popularity and started delivering good results in fields such as computer vision (2012) or machine translation (2014). During the last years we’ve seen how these techniques have been translated to robotics for tasks such as robotic grasping. In the coming years it’s expected to see how these AI techniques will have more and more impact in robotics.

What happened to industrial robots?

Relevant key technologies appeared also for the industrial robotics landscape (e.g.: EtherCAT) however except for the appearance of the first so called collaborative robots, the progress within the field of industrial robotics has significantly slowed down when compared to previous decades. Several groups identified this fact and wrote about it with conflicting opinions. Below we summarize some of the most relevant points encountered while reviewing previous work:

The Hardware Robot Operating System (H-ROS)

For robots to enter new and different fields, it seems reasonable that they need to adapt to the environment itself. This fact was previously highlighted for the industrial robotics case where robots had to be fluent with factory languages. One could argue that the same for service robots (e.g. households robots that will need to adapt to dish washers, washing machines, media servers, etc.), medical robots and many other areas of robotics. Such reasoning leads to the creation of the Hardware Robot Operating System (H-ROS), a vendor-agnostic hardware and software infrastructure for the creation of robot components that interoperate and can be exchanged between robots. H-ROS builds on top of ROS which is used to define a set of standardized logical interfaces that each physical robot component must meet if compliant with H-ROS.

H-ROS facilitates a fast way of building robots choosing the best component for each use-case from a common robot marketplace. It complies with different environments (industrial, professional, medical, …) where variables such as time constraints are critical. Building or extending robots is simplified to the point of placing H-ROS compliant components together. The user simply needs to program the cognition part (i.e. brain) of the robot and develop their own use-cases without facing the complexity of integrating different technologies and hardware interfaces.

H-ROS is on active development and the first prototypes are being deployed with partners. If you’re interested to learn more about it refer to http://h-ros.com or drop us a line at [email protected].

The future ahead

With latest AI results being translated to robotics and the recent investments in the field, there’s a high expectation for what’s coming to robotics over the following decades.

As it was nicely introduced by Melonee Wise in an interview not long ago, nowadays, still, there’re not that many things you can do with a $1000-5000 BOM robot (which is what most people would pay on an individual basis for a robot). Hardware is still a limiting factor and our team strongly believes that a common infrastructure such as H-ROS will facilitate an environment where robot hardware and software will be able to evolve.

The list presented above summarizes, according to our judgement, some of the most technically feasible future robotic technologies to appear.

Acknowledgments

This review was funded and supported by Acutronic Robotics, a firm focused on the development of next-generation robot solutions for a range of clients.

The authors would also like to thank the Erle Robotics and the Acutronic groups for their support and help.

References