A Large Language Model is a type of foundational model which is an ML model trained on a huge text dataset. These datasets range from a few billion to a few hundred billion parameters. The cost to train large language models can reach millions of dollars, thousands of resource hours, computation hours, and complex algorithms. Once an LLM is trained it can be adapted to perform a variety of tasks such as text generation, Q&A, etc. Multiple avenues can be combined to get the most out of an LLM.

Let’s get into them.

Prompting

Prompts are the input to a model to extract a response from the model.

A prompt may contain:

LLM receives the input as a prompt and based on various prompt parameters, produces output.

The following is a historical stock price.
Predict the stock price for next 30 days in a bulleted list

1/1: $300, 1/2: $300 .... 1/26: $350

In the above example:

Inference Parameters

Inference parameters are parameters provided to an LLM to control its randomness, tokens, probabilities, etc. These parameters help users to influence and choose the LLM output.

These inference parameters are the numerical values that can be adjusted by analyzing the output. When combined with advanced prompting, this will lead to efficient output generation.

Advance Prompt Engineering

An LLM can produce desired output using basic prompts which is useful for simple tasks like writing a poem or story or summarizing given text etc. For more context-specific and ambiguous input and output, which need various dialogues to understand and produce the artifact, Advance Prompt Techniques are useful.

There are various types of advanced prompt engineering:

Conclusion

In conclusion, LLM is a potent AI model capable of delivering effective output for various tasks, thanks to extensive training on a vast dataset. Prompt engineering emerges as a valuable tool in guiding LLM to generate desired outputs. When used appropriately, LLM can even produce output for data it has never encountered. Crafting a good and effective prompt is an iterative process, especially for complex tasks like reasoning, where advanced and mixed prompts are often required. Tuning various inference parameters enhances the effectiveness of LLM. The combination of prompt engineering and fine-tuned inference parameters can result in efficient outputs from an LLM.