While organizations around the globe have long gone on an AI investment spree, the number of artificial intelligence projects that make it from prototypes to production still fluctuates around 53%.

Experts believe this often happens due to lacking tech skills, human resources, and tools to scale isolated AI proof of concepts (PoCs) across other use cases. And the presumably high cost of training separate AI models for different tasks, of course.

Foundation models — i.e., large machine learning models trained on vast volumes of unlabelled data under the guidance of skilled AI consultants — may be the ultimate answer to the daunting AI scalability and cost problems.

Your company could use such models as a starting point to enhance or automate various tasks, from converting paper-based documents into editable text files to uncovering customer sentiment in social media reviews. And build on your AI excellence from there, adapting foundation models for future tasks and use cases.

What are foundation models, and how could they help your company excel at AI?

Unless you’ve been living under a rock, you’ve heard about OpenAI’s ChatGPT. This language model has absorbed tremendous volumes of conversational text using the supervised learning and, at the fine-tuning stage, the reinforcement learning from human feedback (RLHF) approaches.

The generative AI solution can analyze input data against 175 billion parameters and profoundly understand the written language. The smart tool can answer questions, summarize and translate text, produce articles on a given topic, write code, and much more. All you need is to provide ChatGPT with the right prompts.

OpenAI’s groundbreaking product is just one example of foundation models that transform AI application development as we know it.

Foundation models disrupt AI development as we know it. Instead of training multiple models for separate use cases, you can now leverage a pre-trained AI solution to enhance or fully automate tasks across multiple departments and job functions.

With foundation AI models like ChatGPT, companies no longer have to train algorithms from scratch for every task they want to enhance or automate. Instead, you only need to select a foundation model that best fits your use case — and fine-tune its performance for a specific objective you’d like to achieve.

Foundation models are perfect for industries where training data can be too hard or expensive to acquire. These industries include healthcare, life science, biotechnology, and manufacturing, to name a few.

What types of foundation AI models are there?

Several types of foundation AI models are commonly used in business applications:

Depending on the specific application and the type of data you have, one foundation model may be more appropriate than another. And your company is free to choose between an open-source solution, which needs a bit of tweaking, or a ready-to-use third-party product — provided it meets your business targets.

Top 3 reasons to leverage foundation AI models for your next project

Compared to standalone, task-oriented machine learning models, foundation models help create reliable AI solutions faster and cheaper, with less data involved and minimal fine-tuning. And that's not to mention that, being trained on more data than a single organization could ever obtain, foundation models display high accuracy from day one.

Below you will find a rundown of foundation AI models’ advantages:

Deemed “the future of AI,” foundation models lower the threshold for tapping into artificial intelligence and could potentially end the failed AI proof of concept cycle by helping businesses scale models across other use cases and company wide.

But with every opportunity comes a challenge.

Things to consider when using foundation models

The only glaring drawback of foundation AI models is a lack of explainability.

Large foundation models can use so much training data and have so many deep layers that it’s sometimes hard to determine how algorithms arrive at their conclusions.

The black-box nature of foundation models leaves a backdoor for cybercriminals, too. Hackers can launch data poisoning attacks and introduce AI bias, further exacerbating artificial intelligence’s ethical issues.

Technology companies should join forces with governments to set up infrastructure for public AI projects to avoid contention surrounding foundation AI models’ usage. AI vendors should also disclose what datasets they use and how they train their models.

As Percy Liang, Stanford HAI faculty and computer science professor, opined during his recent interview with Venture Beat, “We’re very much in the early days, so the professional norms are underdeveloped. It’s therefore imperative that we, as a community, act now to ensure that this technology is developed and deployed in an ethically and socially responsible fashion.”

What does it take to start using foundation models in your organization

As someone who’s spent the last ten years helping companies implement AI systems, the ITRex team is witnessing a shift in artificial intelligence.

Systems that execute specific tasks in a single domain give way to broad AI that learns more generally and works across industries and use cases. Foundation models, trained on large, unlabeled datasets and fine-tuned for various applications, are driving this transformation.

If your company is ready to leapfrog your competitors and get ROI from your AI systems faster, here’s a high-level strategy for implementing foundation models:

  1. Collect and pre-process your data. The first step involves collecting and pre-processing the data you will feed to a foundation AI model. The quality and diversity of this data are critical for ensuring that the fine-tuned model is accurate and robust.
  2. Choose a foundation model. Many pre-trained AI foundation models are available on the market. Some popular solutions include BERT, GPT, and ResNet, among others. It’s important to choose the right foundation model based on the task you want to solve and the type of data you have.
  3. Tweak the model in line with your business objectives. Once your foundation model and data are ready, you can adjust the model’s parameters to your specific task. One way to achieve this goal is transfer learning, where you use the pre-trained weights of the foundation model as a starting point and adjust them based on your training data.
  4. Evaluate the model. After fine-tuning, it’s crucial to determine if the model works well and if further adjustment is necessary. To assess the foundation model’s performance, you can use standard metrics such as accuracy, precision, recall, and F1 score.
  5. Deploy your AI solution. Once you’re satisfied with the performance of your fine-tuned model, you can deploy it in a production environment. Several options for deploying AI models include cloud-based platforms, on-premise servers, or edge devices.

It’s important to remember that implementing AI foundation models requires technical expertise and access to specialized hardware and software tools. Therefore, it may be helpful to partner with a specialized AI vendor or consult with a team of AI experts to ensure the process is done effectively.

Drop us a line to discuss your AI needs! We’ll assess your company’s AI readiness, audit your data and prepare it for algorithmic analysis, and choose the right foundation model for getting started with artificial intelligence!