In this article, we’ll explore what machine learning is and how to apply it effectively using Java, with hands-on examples and practical libraries.

Introduction

For a long time, Java wasn’t considered the go-to language for machine learning - Python dominated the space with libraries like TensorFlow and PyTorch.
However, Java has powerful tools for ML:DeepLearning4J, Tribuo, and Smile, allowing developers to build models directly within the JVM ecosystem.

In this article, we’ll explore how to use these libraries, show practical examples, and compare their strengths and weaknesses.

1. DeepLearning4J (DL4J)

Example: Building and Using a Simple Neural Network

Here’s a full working Java program demonstrating training, prediction, and evaluation using DL4J:

    // 1. Define the neural network configuration 
    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
                .seed(123)
                .updater(new Nesterovs(0.1, 0.9))
                .list()
                .layer(new DenseLayer.Builder()
                        .nIn(4)  // 4 input features
                        .nOut(3) // hidden layer size
                        .activation(Activation.RELU)
                        .build())
                .layer(new OutputLayer.Builder()
                        .nOut(3) // 3 output classes
                        .activation(Activation.SOFTMAX)
                        .build())
                .build();

        MultiLayerNetwork model = new MultiLayerNetwork(conf);
        model.init();

    MultiLayerNetwork model = new MultiLayerNetwork(conf);
    model.init();

    // 2. Prepare training data (features and one-hot labels)
    INDArray input = Nd4j.create(new double[][]{
            {0.1, 0.2, 0.3, 0.4},
            {0.5, 0.6, 0.7, 0.8},
            {0.9, 1.0, 1.1, 1.2},
            {1.3, 1.4, 1.5, 1.6},
            {1.7, 1.8, 1.9, 2.0}
    });

    INDArray labels = Nd4j.create(new double[][]{
            {1, 0, 0},
            {0, 1, 0},
            {0, 0, 1},
            {1, 0, 0},
            {0, 1, 0}
    });

    DataSet trainingData = new DataSet(input, labels);

    // 3. Train the model
    int nEpochs = 1000;
    for (int i = 0; i < nEpochs; i++) {
        model.fit(trainingData);
    }

    // 4. Make predictions
    INDArray testInput = Nd4j.create(new double[][]{
            {0.2, 0.3, 0.4, 0.5}  // new example
    });

    INDArray output = model.output(testInput);
    System.out.println("Predicted probabilities: " + output);

    int predictedClass = Nd4j.argMax(output, 1).getInt(0);
    System.out.println("Predicted class: " + predictedClass);

    // 5. Evaluate model on training data
    Evaluation eval = new Evaluation(3); // 3 classes
    INDArray predicted = model.output(input);
    eval.eval(labels, predicted);
    System.out.println(eval.stats());
}

How it works:

  1. Defines a simple 2-layer network (4 input features → hidden layer → 3-class output).
  2. Uses dummy training data (5 examples, one-hot labels).
  3. Trains the network for 1000 epochs.
  4. Makes a prediction for a new input example.
  5. Evaluates the network on the training data and prints accuracy & stats.

Pros:

Cons:

2. Tribuo

Example: Text Classification

MutableDataset<Label> dataset = new MutableDataset<>();
dataset.add(new Example<>(new Label("spam"), Map.of("text", "Win a free prize!")));
dataset.add(new Example<>(new Label("ham"), Map.of("text", "Let's meet tomorrow.")));

Trainer<Label> trainer = new SGDTrainer();
Model<Label> model = trainer.train(dataset);

Pros:

Cons:

3. Smile

Example: Linear Regression

double[][] x = {{1}, {2}, {3}, {4}}; 
double[] y = {1.1, 1.9, 3.0, 4.1};
OLS ols = OLS.fit(x, y); 
System.out.println("Prediction for 5: " + ols.predict(new double[]{5}));

Pros:

Cons:

Practical Use Cases of Java ML Libraries

DeepLearning4J (DL4J) - Deep Learning in Enterprise

Use cases:

Mini Case Study: Retail Shelf Monitoring

A retail company wants to automatically detect empty shelves using store cameras. DL4J’s CNN can process images from cameras to identify missing products.


Tribuo - Classical Machine Learning in Java

Use cases:

Mini Case Study: Fraud Detection in Finance

MutableDataset<Label> dataset = new MutableDataset<>();
dataset.add(new Example<>(new Label("fraud"), Map.of("amount", 1000, "country", "NG")));
dataset.add(new Example<>(new Label("legit"), Map.of("amount", 50, "country", "US")));

Trainer<Label> trainer = new SGDTrainer();
Model<Label> model = trainer.train(dataset);

Example<Label> newTransaction = new Example<>(null, Map.of("amount", 500, "country", "NG"));
Label prediction = model.predict(newTransaction);
System.out.println("Predicted: " + prediction.getLabel());

Smile - Fast Analytics and Prototyping

Use cases:

Mini Case Study: Customer Segmentation

import smile.clustering.KMeans;

double[][] data = {
    {5.2, 10}, {6.5, 12}, {1.0, 2}, {1.2, 3}, {7.0, 11}
};

KMeans kmeans = KMeans.fit(data, 2); // 2 clusters
int[] labels = kmeans.getLabels();
System.out.println("Cluster assignments: " + Arrays.toString(labels));

Library Comparison

Library

Best for

Example Tasks

Notes

DL4J

Deep learning, GPU tasks

Image recognition, NLP, time-series

High learning curve, enterprise-ready

Tribuo

Classical ML

Classification, regression, anomaly detection

Easy to integrate in microservices

Smile

Analytics & prototyping

Clustering, regression, statistics

Lightweight, fast, less focus on deep learning

Conclusion

Java’s ML ecosystem is robust and evolving rapidly:

With these libraries, Java developers can build modern machine learning applications without leaving the JVM ecosystem, whether it’s enterprise AI, fintech analytics, or user behavior modeling.