This post contains my notes on error metrics.

Contents:
  1. Find all of your absolute errors, xi – x.
  2. Add them all up.
  3. Divide by the number of errors. For example, if you had 10 measurements, divide by 10.
  4. Mean Square Error (MSE) 

    MSE, measures the average of the squares of the errors— that is, the average squared difference between the estimated values and the actual value.
    It is always non-negative, and values closer to zero are better.
    Steps of MSE:
    1. Calculate the residuals for every data point.
    2. Calculate the squared value of the resilduals.
    3. Calculate the average of residuals from step 2.
    4. Compare Them

      MAE:
      • The idea behind the absolute error is to avoid mutual cancellation of the positive and negative errors.
      • An absolute error has only non-negative values.
      • By the same token, avoiding the potential of mutual cancelations has its price – skewness (bias)cannot be determined.
      • Absolute error preserves the same units of measurement as the data under analysis and gives all individual errors the same weights (as compared to squared error).
      • This distance is easily interpretable and when aggregated over a dataset using arithmetic mean has a meaning of the average error.
      • The use of absolute value might present difficulties in the gradient calculation of model parameters. This distance is used in such popular metrics as MAE, MdAE, etc.
      MSE:
      • The squared error follows the same idea as the absolute error – avoid negative error values and mutual cancellation of errors.
      • Due to the square, large errors are emphasized and have a relatively greater effect on the value of the performance metric. At the same time, the effect of relatively small errors will be even smaller. Sometimes this property of the squared error is referred to as penalizing extreme errors or being susceptible to outliers. Based on the application, this property may be considered positive or negative. For example, emphasizing large errors may be a desirable discriminating measure in evaluating models.
      • In case of data outliers , MSE will become much larger compared to MAE. Avoiding the potential of mutual cancelations has its price – skewness (bias)cannot be determined (for MAE).
      • In MSE, error increases in a quadratic fashion while the error increases in a proportional fashion in MAE.
      • In MSE since the error being squared, any prediction error is being heavily penalized.