The fifth blog post in the 5-minute Papers series.

For today’s paper summary, I will be discussing one of the “classic”/pioneer papers for Language Translation, from 2014 (!): “Sequence to Sequence Learning with Neural Network” by Ilya Sutskever et al

TL;DR

The Seq2Seq with Neural Networks was one of the pioneer papers to show that Deep Neural Nets can be used to perform “End to End” Translation. The paper demonstrates that LSTM can be used with minimum assumptions, proposing a 2 LSTM (an “Encoder”- “Decoder”) architecture to do Langauge Translation from English To French, showing the promise of Neural Machine Translation (NMT) over Statistical Machine Translation (SMT)

Context

To highlight again, please keep in mind that the paper is from 2014, when there were no widely open sourced Frameworks such as TF or PyTorch and DNN(s) were just starting to show promise so many ideas presented in the paper might seem very obvious to us today.

The task is to perform Translation of a “Sequence” of sentences/words from English to French.

The DNN techniques expected a fixed dimensionality which was a limitation for NLP, Speech.

Approach

The paper proposes using 2 Deep LSTM Networks:

The Model

The LSTM is tasked to predict the conditional probability of a target sequence given an input sequence generated from the last layer. The generated sequence using this probability may have a length different from the source text.

Training details:

Hypothesis are the pairs of sentences that are generated

Results

Conclusion and Thoughts

Special Thanks to Tuatini GODARD for his suggestions and proofreading. Tuatini is a Full-Time DL Freelancer. I had the chance to interview him, if you’d like to know more about him, you can find the interview here

If you found this interesting and would like to be a part of My Learning Path, you can find me on Twitter here.

If you’re interested in reading about Deep Learning and Computer Vision news, you can check out my newsletter here.

If you’re interested in reading a few best advice from Machine Learning Heroes: Practitioners, Researchers, and Kagglers. Please click here